{ "id": "2009.00157", "version": "v1", "published": "2020-09-01T00:41:59.000Z", "updated": "2020-09-01T00:41:59.000Z", "title": "Sharp existence and classification results for nonlinear elliptic equations in $\\mathbb R^N\\setminus\\{0\\}$ with Hardy potential", "authors": [ "Florica C. Cîrstea", "Maria Fărcăşeanu" ], "comment": "32 pages", "categories": [ "math.AP" ], "abstract": "For $N\\geq 3$, by the seminal paper of Brezis and V\\'eron (Arch. Rational Mech. Anal. 75(1):1--6, 1980/81), no positive solutions of $-\\Delta u+u^q=0$ in $\\mathbb R^N\\setminus \\{0\\}$ exist if $q\\geq N/(N-2)$; for $11$ and $\\theta\\in \\mathbb R$, we prove that the nonlinear elliptic problem (*) $-\\Delta u-\\lambda \\,|x|^{-2}\\,u+|x|^{\\theta}u^q=0$ in $\\mathbb R^N\\setminus \\{0\\}$ with $u>0$ has a $C^1(\\mathbb R^N\\setminus \\{0\\})$ solution if and only if $\\lambda>\\lambda^*$, where $\\lambda^*=\\Theta(N-2-\\Theta) $ with $\\Theta=(\\theta+2)/(q-1)$. We show that (a) if $\\lambda>(N-2)^2/4$, then $U_0(x)=(\\lambda-\\lambda^*)^{1/(q-1)}|x|^{-\\Theta}$ is the only solution of (*) and (b) if $\\lambda^*<\\lambda\\leq (N-2)^2/4$, then all solutions of (*) are radially symmetric and their total set is $U_0\\cup \\{U_{\\gamma,q,\\lambda}:\\ \\gamma\\in (0,\\infty) \\}$. We give the precise behavior of $ U_{\\gamma,q,\\lambda}$ near zero and at infinity, distinguishing between $1\\max\\{q_{N,\\theta},1\\}$, where $q_{N,\\theta}=(N+2\\theta+2)/(N-2)$. In addition, for $\\theta\\leq -2$ we settle the structure of the set of all positive solutions of (*) in $\\Omega\\setminus \\{0\\}$, subject to $u|_{\\partial\\Omega}=0$, where $\\Omega$ is a smooth bounded domain containing zero, complementing the works of C\\^{\\i}rstea (Mem. Amer. Math. Soc. 227, 2014) and Wei--Du (J. Differential Equations 262(7):3864--3886, 2017).", "revisions": [ { "version": "v1", "updated": "2020-09-01T00:41:59.000Z" } ], "analyses": { "subjects": [ "35J60", "35B40", "35J25" ], "keywords": [ "nonlinear elliptic equations", "sharp existence", "classification results", "hardy potential", "bounded domain containing zero" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }