{ "id": "2008.13708", "version": "v1", "published": "2020-08-31T16:15:41.000Z", "updated": "2020-08-31T16:15:41.000Z", "title": "Numerical radius inequalities of operator matrices using $(α,β)$-norm", "authors": [ "P. Bhunia", "A. Bhanja", "D. Sain", "K. Paul" ], "categories": [ "math.FA" ], "abstract": "This paper is a continuation of a recent work on a new norm, christened the $ (\\alpha, \\beta)$-norm, on the space of bounded linear operators on a Hilbert space. We obtain some upper bounds for the said norm of $n\\times n$ operator matrices. As an application of the present study, we estimate bounds for the numerical radius and the usual operator norm of $n\\times n$ operator matrices, which generalize the existing ones.", "revisions": [ { "version": "v1", "updated": "2020-08-31T16:15:41.000Z" } ], "analyses": { "subjects": [ "47A30", "47A12" ], "keywords": [ "operator matrices", "numerical radius inequalities", "usual operator norm", "estimate bounds", "upper bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }