{ "id": "2008.13587", "version": "v1", "published": "2020-08-31T13:17:25.000Z", "updated": "2020-08-31T13:17:25.000Z", "title": "On a Poisson-algebraic characterization of vector bundles", "authors": [ "Zihindula Mushengezi Elie" ], "comment": "13 pages", "categories": [ "math.DG" ], "abstract": "We prove that the $\\mathbb{R}-$algebra $\\mathcal{S}(\\mathcal{P}(E,M)) $ of symbols of differential operators acting on the sections of the vector bundle $E\\to M$ decompose into the sum \\[ \\mathcal{S}(\\mathcal{P}(E,M))=\\mathcal{J}(E)\\oplus {\\rm Pol}(T^*M) \\] where $\\mathcal{J}(E)$ is an ideal of $\\mathcal{S}(\\mathcal{P}(E,M))$ in which product of two elements is always zero. This induces that $\\mathcal{S}(\\mathcal{P}(E,M))$ cannot characterize $E \\to M$ with its only structure of $\\mathbb{R}-$ algebra. We prove that with its Poisson algebra structure, $\\mathcal{S}(\\mathcal{P}(E,M))$ characterizes the vector bundle $E\\to M$ without the requirement to be considered as a ${\\rm C}^\\infty(M)-$module.", "revisions": [ { "version": "v1", "updated": "2020-08-31T13:17:25.000Z" } ], "analyses": { "keywords": [ "vector bundle", "poisson-algebraic characterization", "poisson algebra structure", "differential operators acting" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }