{ "id": "2008.13282", "version": "v1", "published": "2020-08-30T21:34:33.000Z", "updated": "2020-08-30T21:34:33.000Z", "title": "Gradient and Eigenvalue Estimates on the canonical bundle of Kähler manifolds", "authors": [ "Zhiqin Lu", "Qi S. Zhang", "Meng Zhu" ], "categories": [ "math.DG" ], "abstract": "We prove certain gradient and eigenvalue estimates, as well as the heat kernel estimates, for the Hodge Laplacian on $(m,0)$ forms, i.e., sections of the canonical bundle of K\\\"ahler manifolds, where $m$ is the complex dimension of the manifold. Instead of the usual dependence on curvature tensor, our condition depends only on the Ricci curvature bound. The proof is based on a new Bochner type formula for the gradient of $(m, 0)$ forms, which involves only the Ricci curvature and the gradient of the scalar curvature.", "revisions": [ { "version": "v1", "updated": "2020-08-30T21:34:33.000Z" } ], "analyses": { "subjects": [ "58A10", "58J35", "58J50" ], "keywords": [ "eigenvalue estimates", "canonical bundle", "kähler manifolds", "heat kernel estimates", "bochner type formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }