{ "id": "2008.13163", "version": "v1", "published": "2020-08-30T13:18:45.000Z", "updated": "2020-08-30T13:18:45.000Z", "title": "Explicit Relations between Kaneko--Yamamoto Type Multiple Zeta Values and Related Variants", "authors": [ "Ce Xu", "Jianqiang Zhao" ], "comment": "32 pages", "categories": [ "math.NT" ], "abstract": "In this paper we first establish several integral identities. These integrals are of the form \\[\\int_0^1 x^{an+b} f(x)\\,dx\\quad (a\\in\\{1,2\\},\\ b\\in\\{-1,-2\\})\\] where $f(x)$ is a single-variable multiple polylogarithm function or $r$-variable multiple polylogarithm function or Kaneko--Tsumura A-function (this is a single-variable multiple polylogarithm function of level two). We find that these integrals can be expressed in terms of multiple zeta (star) values and their related variants (multiple $t$-values, multiple $T$-values, multiple $S$-values etc.), and multiple harmonic (star) sums and their related variants (multiple $T$-harmonic sums, multiple $S$-harmonic sums etc.). Using these integral identities, we prove many explicit evaluations of Kaneko--Yamamoto multiple zeta values and their related variants. Further, we derive some relations involving multiple zeta (star) values and their related variants.", "revisions": [ { "version": "v1", "updated": "2020-08-30T13:18:45.000Z" } ], "analyses": { "subjects": [ "11M06", "11M32", "11M99", "11G55" ], "keywords": [ "kaneko-yamamoto type multiple zeta values", "related variants", "explicit relations", "single-variable multiple polylogarithm function" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }