{ "id": "2008.13079", "version": "v1", "published": "2020-08-30T03:06:11.000Z", "updated": "2020-08-30T03:06:11.000Z", "title": "Probabilistic renormalization and analytic continuation", "authors": [ "Gunduz Caginalp", "Bogdan Ion" ], "comment": "20 pg", "categories": [ "math.NT", "math-ph", "math.MP" ], "abstract": "We introduce a theory of probabilistic renormalization for series, the renormalized values being encoded in the expectation of a certain random variable on the set of natural numbers. We identify a large class of weakly renormalizable series of Dirichlet type, whose analysis depends on the properties of a (infinite order) difference operator that we call Bernoulli operator. For the series in this class, we show that the probabilistic renormalization is compatible with analytic continuation. The general zeta series for $s\\neq 1$ is found to be strongly renormalizable and its renormalized value is given by the Riemann zeta function.", "revisions": [ { "version": "v1", "updated": "2020-08-30T03:06:11.000Z" } ], "analyses": { "subjects": [ "40A05", "40G99", "30B40", "30B50", "11M41" ], "keywords": [ "probabilistic renormalization", "analytic continuation", "general zeta series", "renormalized value", "riemann zeta function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }