{ "id": "2008.12975", "version": "v1", "published": "2020-08-29T13:23:18.000Z", "updated": "2020-08-29T13:23:18.000Z", "title": "Family sizes for complete multipartite graphs", "authors": [ "Danielle Gregg", "Thomas W. Mattman", "Zachary Porat", "George Todd" ], "comment": "18 pages, 14 figures", "categories": [ "math.CO" ], "abstract": "Inspired by a question of Goldberg et al., we investigate the size of the $\\nabla Y$ family for a complete multipartite graph. Aside from three families, which appear to grow exponentially, these families stabilize: after a certain point, increasing the number of vertices in the largest part does not change family size.", "revisions": [ { "version": "v1", "updated": "2020-08-29T13:23:18.000Z" } ], "analyses": { "subjects": [ "05C10", "57M15", "05C35" ], "keywords": [ "complete multipartite graph", "family size", "largest part" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }