{ "id": "2008.12506", "version": "v1", "published": "2020-08-28T06:59:48.000Z", "updated": "2020-08-28T06:59:48.000Z", "title": "On the divisibility of the rank of appearance of a Lucas sequence", "authors": [ "Carlo Sanna" ], "categories": [ "math.NT" ], "abstract": "Let $U = (U_n)_{n \\geq 0}$ be a Lucas sequence and, for every prime number $p$, let $\\rho_U(p)$ be the rank of appearance of $p$ in $U$, that is, the smallest positive integer $k$ such that $p$ divides $U_k$, whenever it exists. Furthermore, let $d$ be an odd positive integer. Under some mild hypotheses, we prove an asymptotic formula for the number of primes $p \\leq x$ such that $d$ divides $\\rho_U(p)$, as $x \\to +\\infty$.", "revisions": [ { "version": "v1", "updated": "2020-08-28T06:59:48.000Z" } ], "analyses": { "subjects": [ "11B39", "11N05", "11N37" ], "keywords": [ "lucas sequence", "appearance", "divisibility", "prime number", "smallest positive integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }