{ "id": "2008.12344", "version": "v1", "published": "2020-08-27T19:26:16.000Z", "updated": "2020-08-27T19:26:16.000Z", "title": "Heat Semigroups on Weyl Algebra", "authors": [ "Ivan G. Avramidi" ], "comment": "39 pages", "categories": [ "math-ph", "hep-th", "math.MP" ], "abstract": "We study the algebra of semigroups of Laplacians on the Weyl algebra. We consider two sets of operators $\\nabla^\\pm_i$ forming the Lie algebra $[\\nabla^\\pm_j,\\nabla^\\pm_k]= i\\mathcal{R}^\\pm_{jk}$ and $[\\nabla^+_j,\\nabla^-_k] =i\\frac{1}{2}(\\mathcal{R}^+_{jk}+\\mathcal{R}^-_{jk})$ with some anti-symmetric matrices $\\mathcal{R}^\\pm_{ij}$ and define the corresponding Laplacians $\\Delta_\\pm=g_\\pm^{ij}\\nabla^\\pm_i\\nabla^\\pm_j$ with some positive matrices $g_\\pm^{ij}$. We show that the heat semigroups $\\exp(t\\Delta_\\pm)$ can be represented as a Gaussian average of the operators $\\exp\\left<\\xi,\\nabla^\\pm\\right>$ and use these representations to compute the product of the semigroups, $\\exp(t\\Delta_+)\\exp(s\\Delta_-)$ and the corresponding heat kernel.", "revisions": [ { "version": "v1", "updated": "2020-08-27T19:26:16.000Z" } ], "analyses": { "keywords": [ "weyl algebra", "heat semigroups", "corresponding heat kernel", "gaussian average", "lie algebra" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable" } } }