{ "id": "2008.12013", "version": "v1", "published": "2020-08-27T09:32:55.000Z", "updated": "2020-08-27T09:32:55.000Z", "title": "Lyapunov exponent for Whitney's problem with random drive", "authors": [ "Nikolai A. Stepanov", "Mikhail A. Skvortsov" ], "comment": "6 pages, 3 figures", "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn", "math-ph", "math.MP", "nlin.CD" ], "abstract": "We consider the statistical properties of a non-falling trajectory in the Whitney problem of an inverted pendulum excited by an external force. In the case when the external force is white noise, we recently found the instantaneous distribution function of the pendulum angle and velocity over an infinite time interval using a transfer-matrix analysis of the supersymmetric field theory. Here, we generalize our approach to the case of finite time intervals and multipoint correlation functions. Using the developed formalism, we calculate the Lyapunov exponent, which determines the decay rate of correlations on a non-falling trajectory.", "revisions": [ { "version": "v1", "updated": "2020-08-27T09:32:55.000Z" } ], "analyses": { "keywords": [ "lyapunov exponent", "whitneys problem", "random drive", "external force", "infinite time interval" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }