{ "id": "2008.11768", "version": "v1", "published": "2020-08-26T19:07:04.000Z", "updated": "2020-08-26T19:07:04.000Z", "title": "Density of imaginary multiplicative chaos via Malliavin calculus", "authors": [ "Juhan Aru", "Antoine Jego", "Janne Junnila" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider the imaginary Gaussian multiplicative chaos, i.e. the complex Wick exponential $\\mu_\\beta := :e^{i\\beta \\Gamma(x)}:$ for a log-correlated Gaussian field $\\Gamma$ in $d \\geq 1$ dimensions. We show that for any nonzero and bounded test function $f$, the complex-valued random variable $\\mu_\\beta(f)$ has a smooth density w.r.t. the Lebesgue measure on $\\mathbb{C}$. Our main tool is Malliavin calculus, which seems to be well-adapted to the study of (complex) multiplicative chaos. To apply Malliavin calculus to imaginary chaos, we develop some estimates on imaginary chaos that could be of independent interest.", "revisions": [ { "version": "v1", "updated": "2020-08-26T19:07:04.000Z" } ], "analyses": { "subjects": [ "60G15", "60G20", "60G57", "60G60", "60H07", "82B21" ], "keywords": [ "malliavin calculus", "imaginary multiplicative chaos", "imaginary chaos", "imaginary gaussian multiplicative chaos", "complex wick exponential" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }