{ "id": "2008.11496", "version": "v1", "published": "2020-08-26T11:23:08.000Z", "updated": "2020-08-26T11:23:08.000Z", "title": "Bargmann-Fock sheaves on Kähler manifolds", "authors": [ "Kwokwai Chan", "Naichung Conan Leung", "Qin Li" ], "comment": "Comments are welcome!", "categories": [ "math.DG", "hep-th", "math.CV", "math.QA" ], "abstract": "Fedosov used flat sections of the Weyl bundle on a symplectic manifold to construct a star product $\\star$ which gives rise to a deformation quantization. By extending Fedosov's method, we give an explicit, analytic construction of a sheaf of Bargmann-Fock modules over the Weyl bundle of a K\\\"ahler manifold $X$ equipped with a compatible Fedosov abelian connection, and show that the sheaf of flat sections forms a module sheaf over the sheaf of deformation quantization algebras defined $(C^\\infty_X[[\\hbar]], \\star)$. This sheaf can be viewed as the $\\hbar$-expansion of $L^{\\otimes k}$ as $k \\to \\infty$, where $L$ is a prequantum line bundle on $X$ and $\\hbar = 1/k$.", "revisions": [ { "version": "v1", "updated": "2020-08-26T11:23:08.000Z" } ], "analyses": { "keywords": [ "kähler manifolds", "bargmann-fock sheaves", "weyl bundle", "deformation quantization algebras", "flat sections forms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }