{ "id": "2008.11429", "version": "v1", "published": "2020-08-26T07:52:34.000Z", "updated": "2020-08-26T07:52:34.000Z", "title": "Sharp decay estimates for massless Dirac fields on a Schwarzschild background", "authors": [ "Siyuan Ma", "Lin Zhang" ], "comment": "65 pages, 6 figures, 1 table", "categories": [ "math.AP", "gr-qc", "math-ph", "math.MP" ], "abstract": "We consider the explicit asymptotic profile of massless Dirac fields on a Schwarzschild background. First, we prove a uniform bound estimate for a positive definite energy and an integrated local energy decay estimate for the spin $s=\\pm \\frac{1}{2}$ components of the Dirac field. Based on these estimates and depending on the asymptotics of the initial data, we further show these components have pointwise decay $c_1v^{-3/2-s}\\tau^{-3/2+s}$ or $c_2v^{-3/2-s}\\tau^{-5/2+s}$ as both an upper and a lower bound, with constants $c_1$ and $c_2$ explicitly expressed in terms of the initial data. This establishes the validity of the conjectured Price's law for massless Dirac fields outside a Schwarzschild black hole.", "revisions": [ { "version": "v1", "updated": "2020-08-26T07:52:34.000Z" } ], "analyses": { "subjects": [ "35Q75", "58K55", "35L45", "58J45", "83C30" ], "keywords": [ "massless dirac fields", "sharp decay estimates", "schwarzschild background", "initial data", "integrated local energy decay estimate" ], "note": { "typesetting": "TeX", "pages": 65, "language": "en", "license": "arXiv", "status": "editable" } } }