{ "id": "2008.11255", "version": "v1", "published": "2020-08-25T20:18:07.000Z", "updated": "2020-08-25T20:18:07.000Z", "title": "Some Remarks on H-stability of syzygy bundle on algebraic surface", "authors": [ "H. Torres-López", "A. G. Zamora" ], "comment": "9 Pages", "categories": [ "math.AG" ], "abstract": "Let $L$ be a globally generated line bundle over a smooth irreducible projective surface$X$. The syzygy bundle $M_{L}$ is the kernel of the evaluation map $H^0(L)\\otimes\\mathcal O_X\\to L$. The main theorem proves that the syzygy bundle defined by $nL+D$ is stable for any polarization $H$, where $L$ is any ample , $D$ is an arbitrary divisor and $n$ is a sufficiently large natural number. Taking $n=1$, we obtain the $L$-stability of $M_L$ for Hirzebruch surfaces, del Pezzo surfaces and Enriques surfaces. Finally, the $-K$-stability of syzygy bundles $M_L$ over del Pezzo surfaces is proved.", "revisions": [ { "version": "v1", "updated": "2020-08-25T20:18:07.000Z" } ], "analyses": { "subjects": [ "14J60", "14J26" ], "keywords": [ "syzygy bundle", "algebraic surface", "del pezzo surfaces", "h-stability", "sufficiently large natural number" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }