{ "id": "2008.11179", "version": "v1", "published": "2020-08-25T17:23:58.000Z", "updated": "2020-08-25T17:23:58.000Z", "title": "Universal tensor categories generated by dual pairs", "authors": [ "Alexandru Chirvasitu", "Ivan Penkov" ], "comment": "35 pages + references", "categories": [ "math.RT", "math.CT", "math.RA" ], "abstract": "Let $V_*\\otimes V\\rightarrow\\mathbb{C}$ be a non-degenerate pairing of countable-dimensional complex vector spaces $V$ and $V_*$. The Mackey Lie algebra $\\mathfrak{g}=\\mathfrak{gl}^M(V,V_*)$ corresponding to this paring consists of all endomorphisms $\\varphi$ of $V$ for which the space $V_*$ is stable under the dual endomorphism $\\varphi^*: V^*\\rightarrow V^*$. We study the tensor Grothendieck category $\\mathbb{T}$ generated by the $\\mathfrak{g}$-modules $V$, $V_*$ and their algebraic duals $V^*$ and $V^*_*$. This is an analogue of categories considered in prior literature, the main difference being that the trivial module $\\mathbb{C}$ is no longer injective in $\\mathbb{T}$. We describe the injective hull $I$ of $\\mathbb{C}$ in $\\mathbb{T}$, and show that the category $\\mathbb{T}$ is Koszul. In addition, we prove that $I$ is endowed with a natural structure of commutative algebra. We then define another category $_I\\mathbb{T}$ of objects in $\\mathbb{T}$ which are free as $I$-modules. Our main result is that the category ${}_I\\mathbb{T}$ is also Koszul, and moreover that ${}_I\\mathbb{T}$ is universal among abelian $\\mathbb{C}$-linear tensor categories generated by two objects $X$, $Y$ with fixed subobjects $X'\\hookrightarrow X$, $Y'\\hookrightarrow Y$ and a pairing $X\\otimes Y\\rightarrow \\text{\\textbf{1}}$ where \\textbf{1} is the monoidal unit. We conclude the paper by discussing the orthogonal and symplectic analogues of the categories $\\mathbb{T}$ and ${}_I\\mathbb{T}$.", "revisions": [ { "version": "v1", "updated": "2020-08-25T17:23:58.000Z" } ], "analyses": { "subjects": [ "17B65", "17B10", "18M05", "18E10", "16T15", "16S37" ], "keywords": [ "universal tensor categories", "dual pairs", "countable-dimensional complex vector spaces", "mackey lie algebra", "tensor grothendieck category" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }