{ "id": "2008.10840", "version": "v1", "published": "2020-08-25T06:27:38.000Z", "updated": "2020-08-25T06:27:38.000Z", "title": "On $\\mathbb{A}$-numerical radius inequalities of operators and operator matrices", "authors": [ "Raj Kumar Nayak", "Pintu Bhunia", "Kallol Paul" ], "categories": [ "math.FA" ], "abstract": "Let $\\mathcal{H}$ be a complex Hilbert space and let $A$ be a positive operator on $\\mathcal{H}$. We obtain new bounds for the $A$-numerical radius of operators in semi-Hilbertican space $\\mathcal{B}_A(\\mathcal{H})$. Further, we develop inequalities for the $\\mathbb{A}$-numerical radius of $n\\times n$ operator matrices of the form $(T_{ij})_{n\\times n}$, where $T_{ij} \\in \\mathcal{B}_A(\\mathcal{H})$ and $\\mathbb{A}=\\mbox{diag}(A,A,\\ldots,A)$ is an $n\\times n$ operator diagonal matrix. Finally, we estimate bounds for the $B$-operator seminorm and $B$-numerical radius of $2\\times 2$ operator matrices, where $B=\\mbox{diag}(A,A)$. The inequalities and bounds obtained here generalize and improve on the existing ones, respectively.", "revisions": [ { "version": "v1", "updated": "2020-08-25T06:27:38.000Z" } ], "analyses": { "subjects": [ "47A12", "47A30", "47A63" ], "keywords": [ "operator matrices", "numerical radius inequalities", "operator diagonal matrix", "complex hilbert space", "semi-hilbertican space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }