{ "id": "2008.10203", "version": "v1", "published": "2020-08-24T05:51:16.000Z", "updated": "2020-08-24T05:51:16.000Z", "title": "On a generalization of Monge--Ampère equations and Monge--Ampère systems", "authors": [ "Masahiro Kawamata", "Kazuhiro Shibuya" ], "categories": [ "math.DG" ], "abstract": "We discuss Monge--Amp\\`ere equations from the view point of differential geometry. It is known that a Monge--Amp\\`ere equation corresponds to a special exterior differential system on a 1-jet space. In this paper, we generalize Monge--Amp\\`ere equations and prove that a $(k+1)$st order generalized Monge--Amp\\`ere equation corresponds to a special exterior differential system on a $k$-jet space. Then its solution naturally corresponds to an integral manifold of the corresponding exterior differential system. Moreover, we verify that the Korteweg-de Vries (KdV) equation and the Cauchy--Riemann equations are examples of our equation.", "revisions": [ { "version": "v1", "updated": "2020-08-24T05:51:16.000Z" } ], "analyses": { "subjects": [ "58A15", "58A17" ], "keywords": [ "monge-ampère equations", "monge-ampère systems", "special exterior differential system", "generalization", "equation corresponds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }