{ "id": "2008.09493", "version": "v1", "published": "2020-08-21T14:16:29.000Z", "updated": "2020-08-21T14:16:29.000Z", "title": "Structure of Semi-Continuous Q-Tame Persistence Modules", "authors": [ "Maximilian Schmahl" ], "comment": "11 pages", "categories": [ "math.RT", "math.AT" ], "abstract": "Using a result by Chazal, Crawley-Boevey and de Silva concerning radicals of persistence modules, we show that every lower semi-continuous q-tame persistence module can be decomposed as a direct sum of interval modules and that every upper semi-continuous q-tame persistence module can be decomposed as a product of interval modules.", "revisions": [ { "version": "v1", "updated": "2020-08-21T14:16:29.000Z" } ], "analyses": { "subjects": [ "16G20", "55N31" ], "keywords": [ "upper semi-continuous q-tame persistence module", "lower semi-continuous q-tame persistence module", "interval modules", "silva concerning radicals", "direct sum" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }