{ "id": "2008.09226", "version": "v1", "published": "2020-08-20T23:22:17.000Z", "updated": "2020-08-20T23:22:17.000Z", "title": "On the minimal drift for recurrence in the frog model on $d$-ary trees", "authors": [ "Chengkun Guo", "Si Tang", "Ningxi Wei" ], "comment": "21 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "We study the recurrence of one-per-site frog model $\\text{FM}(d, p)$ on a $d$-ary tree with drift parameter $p\\in [0,1]$, which determines the bias of frogs' random walks. We are interested in the minimal drift $p_{d}$ so that the frog model is recurrent. Using a coupling argument together with a generating function technique, we prove that for all $d \\ge 2$, $p_{d}\\le 1/3$, which is the optimal universal upper bound.", "revisions": [ { "version": "v1", "updated": "2020-08-20T23:22:17.000Z" } ], "analyses": { "subjects": [ "60K35", "60J80", "60J10", "82B26" ], "keywords": [ "minimal drift", "ary tree", "recurrence", "optimal universal upper bound", "one-per-site frog model" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }