{ "id": "2008.08962", "version": "v1", "published": "2020-08-20T13:31:36.000Z", "updated": "2020-08-20T13:31:36.000Z", "title": "The density of rational lines on hypersurfaces: A bihomogeneous perspective", "authors": [ "Julia Brandes" ], "categories": [ "math.NT" ], "abstract": "Let $F$ be a non-singular homogeneous polynomial of degree $d$ in $n$ variables. We give an asymptotic formula of the pairs of integer points $(\\mathbf x, \\mathbf y)$ with $|\\mathbf x| \\le X$ and $|\\mathbf y| \\le Y$ which generate a line lying in the hypersurface defined by $F$, provided that $n > 2^{d-1}d^4(d+1)(d+2)$. In particular, by restricting to Zariski-open subsets we are able to avoid imposing any conditions on the relative sizes of $X$ and $Y$.", "revisions": [ { "version": "v1", "updated": "2020-08-20T13:31:36.000Z" } ], "analyses": { "subjects": [ "11D72", "11P55", "11E76", "14G05" ], "keywords": [ "rational lines", "bihomogeneous perspective", "hypersurface", "integer points", "non-singular homogeneous polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }