{ "id": "2008.08768", "version": "v1", "published": "2020-08-20T04:26:47.000Z", "updated": "2020-08-20T04:26:47.000Z", "title": "Bias of Root Numbers for Modular Newforms of Cubic Level", "authors": [ "Qinghua Pi", "Zhi Qi" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "Let $H^{\\pm}_{2k} (N^3)$ denote the set of modular newforms of cubic level $N^3$, weight $2 k$, and root number $\\pm 1$. For $N > 1$ squarefree and $k>1$, we use an analytic method to establish neat and explicit formulas for the difference $|H^{+}_{2k} (N^3)| - |H^{-}_{2k} (N^3)|$ as a multiple of the product of $\\varphi (N)$ and the class number of $\\mathbb{Q}(\\sqrt{- N})$. In particular, the formulas exhibit a strict bias towards the root number $+1$. Our main tool is a root-number weighted simple Petersson formula for such newforms.", "revisions": [ { "version": "v1", "updated": "2020-08-20T04:26:47.000Z" } ], "analyses": { "subjects": [ "11F11", "11F72" ], "keywords": [ "root number", "modular newforms", "cubic level", "root-number weighted simple petersson formula", "strict bias" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }