{ "id": "2008.08192", "version": "v1", "published": "2020-08-18T23:25:23.000Z", "updated": "2020-08-18T23:25:23.000Z", "title": "On the exponent of the Weak commutativity group $χ(G)$", "authors": [ "R. Bastos", "E. de Melo", "R. de Oliveira" ], "categories": [ "math.GR" ], "abstract": "The weak commutativity group $\\chi(G)$ is generated by two isomorphic groups $G$ and $G^{\\varphi }$ subject to the relations $[g,g^{\\varphi}]=1$ for all $g \\in G$. The group $\\chi(G)$ is an extension of $D(G) = [G,G^{\\varphi}]$ by $G \\times G$. We prove that if $G$ is a finite solvable group of derived length $d$, then $\\exp(D(G))$ divides $\\exp(G)^{d}$ if $|G|$ is odd and $\\exp(D(G))$ divides $2^{d-1}\\cdot \\exp(G)^{d}$ if $|G|$ is even. Further, if $p$ is a prime and $G$ is a $p$-group of class $p-1$, then $\\exp(D(G))$ divides $\\exp(G)$. Moreover, if $G$ is a finite $p$-group of class $c\\geq 2$, then $\\exp(D(G))$ divides $\\exp(G)^{\\lceil \\log_{p-1}(c+1)\\rceil}$ ($p\\geq 3$) and $\\exp(D(G))$ divides $2^{\\lfloor \\log_2(c)\\rfloor} \\cdot \\exp(G)^{\\lfloor \\log_2(c)\\rfloor+1}$ ($p=2$).", "revisions": [ { "version": "v1", "updated": "2020-08-18T23:25:23.000Z" } ], "analyses": { "keywords": [ "weak commutativity group", "isomorphic groups", "finite solvable group", "derived length" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }