{ "id": "2008.07490", "version": "v1", "published": "2020-08-17T17:31:58.000Z", "updated": "2020-08-17T17:31:58.000Z", "title": "Inverse Mean Curvature Flow of Rotationally Symmetric Hypersurfaces", "authors": [ "Brian Harvie" ], "comment": "28 pages, 5 figures", "categories": [ "math.DG", "math.AP" ], "abstract": "Given a non-star-shaped $H>0$ rotationally symmetric hypersurface $N_{0} \\subset \\mathbb{R}^{n+1}$ with a sufficiently long, thick neck, we prove that the corresponding solution $N_{t}$ of Inverse Mean Curvature Flow exists for all time and homothetically converges to a round sphere at large times.", "revisions": [ { "version": "v1", "updated": "2020-08-17T17:31:58.000Z" } ], "analyses": { "keywords": [ "inverse mean curvature flow", "rotationally symmetric hypersurface", "large times", "round sphere", "thick neck" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }