{ "id": "2008.07398", "version": "v1", "published": "2020-08-17T15:13:28.000Z", "updated": "2020-08-17T15:13:28.000Z", "title": "Regularity results for Choquard equations involving fractional $p$-Laplacian", "authors": [ "Reshmi Biswas", "Sweta Tiwari" ], "categories": [ "math.AP" ], "abstract": "In this article first we address the regularity of weak solution for a class of $p$-fractional Choquard equations: \\begin{equation*} \\;\\;\\; \\left.\\begin{array}{rl} (-\\Delta)_p^su &= \\left(\\displaystyle\\int_\\Omega\\frac{F(y,u)}{|x-y|^{\\mu}}dy\\right)f(x,u),\\hspace{5mm}x\\in \\Omega,\\\\ u &=0,\\hspace{50mm}x\\in \\mathbb R^N\\setminus \\Omega, \\end{array} \\right\\} \\end{equation*} where $\\Omega\\subset\\mathbb R^N$ is a smooth bounded domain, $1