{ "id": "2008.06815", "version": "v1", "published": "2020-08-16T00:49:08.000Z", "updated": "2020-08-16T00:49:08.000Z", "title": "A Bernstein Type Theorem for Minimal Graphs over Convex Cones", "authors": [ "Nick Edelen", "Zhehui Wang" ], "comment": "10 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "Given any $n \\geq 2$, we show that if $\\Omega \\subsetneq \\mathbb{R}^n$ is an open, convex cone (e.g. a half-space), and $u : \\Omega \\to \\mathbb{R}$ is a solution to the minimal surface equation which agrees with a linear function on $\\partial\\Omega$, then $u$ must itself be linear.", "revisions": [ { "version": "v1", "updated": "2020-08-16T00:49:08.000Z" } ], "analyses": { "keywords": [ "bernstein type theorem", "convex cone", "minimal graphs", "minimal surface equation", "linear function" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }