{ "id": "2008.05996", "version": "v1", "published": "2020-08-13T16:31:56.000Z", "updated": "2020-08-13T16:31:56.000Z", "title": "On the automorphism group of minimal S-adic subshifts of finite alphabet rank", "authors": [ "Bastián Espinoza", "Alejandro Maass" ], "comment": "23 pages, 11 figures", "categories": [ "math.DS" ], "abstract": "It has been recently proved that the automorphism group of a minimal subshift with non-superlineal word complexity is virtually $\\mathbb{Z}$. In this article we extend this result to a broader class proving that the automorphism group of a minimal S-adic subshift of finite alphabet rank is virtually $\\mathbb{Z}$. The proof relies on a fine combinatorial analysis of the asymptotic classes in this type of subshifts.", "revisions": [ { "version": "v1", "updated": "2020-08-13T16:31:56.000Z" } ], "analyses": { "subjects": [ "37B10", "37B10" ], "keywords": [ "minimal s-adic subshift", "finite alphabet rank", "automorphism group", "non-superlineal word complexity", "fine combinatorial analysis" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }