{ "id": "2008.05543", "version": "v1", "published": "2020-08-12T19:31:22.000Z", "updated": "2020-08-12T19:31:22.000Z", "title": "Interior and up to the boundary regularity for the fractional $g$-Laplacian: the convex case", "authors": [ "Julián Fernández Bonder", "Ariel Salort", "Hernán Vivas" ], "categories": [ "math.AP" ], "abstract": "We establish interior and up to the boundary H\\\"older regularity estimates for weak solutions of the Dirichlet problem for the fractional $g-$Laplacian with bounded right hand side and $g$ convex. These are the first regularity results available in the literature for integro-differential equations in the context of fractional Orlicz-Sobolev spaces.", "revisions": [ { "version": "v1", "updated": "2020-08-12T19:31:22.000Z" } ], "analyses": { "keywords": [ "convex case", "boundary regularity", "first regularity results", "bounded right hand side", "fractional orlicz-sobolev spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }