{ "id": "2008.05296", "version": "v1", "published": "2020-08-12T13:20:40.000Z", "updated": "2020-08-12T13:20:40.000Z", "title": "Invariant measures for horospherical actions and Anosov groups", "authors": [ "Minju Lee", "Hee Oh" ], "comment": "47 pages, 1 figure", "categories": [ "math.DS", "math.GT" ], "abstract": "Let $\\Gamma$ be an Anosov subgroup of a connected semisimple real linear Lie group $G$. For a maximal horospherical subgroup $N$ of $G$, we show that the space of all non-trivial $NM$-invariant ergodic and $A$-quasi-invariant Radon measures on $\\Gamma\\backslash G$, up to proportionality, is homeomorphic to ${\\mathbb R}^{\\text{rank}\\,G-1}$, where $A$ is a maximal real split torus and $M$ is a maximal compact subgroup which normalizes $N$.", "revisions": [ { "version": "v1", "updated": "2020-08-12T13:20:40.000Z" } ], "analyses": { "keywords": [ "anosov groups", "invariant measures", "horospherical actions", "semisimple real linear lie group", "connected semisimple real linear lie" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }