{ "id": "2008.04997", "version": "v1", "published": "2020-08-11T20:39:10.000Z", "updated": "2020-08-11T20:39:10.000Z", "title": "Automorphism groups of finite posets II", "authors": [ "Jonathan A. Barmak" ], "comment": "7 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "We prove that every finite group $G$ can be realized as the automorphism group of a poset with $4|G|$ points. We also provide bounds for the minimum number of points of a poset with cyclic automorphism group of a given prime power order.", "revisions": [ { "version": "v1", "updated": "2020-08-11T20:39:10.000Z" } ], "analyses": { "subjects": [ "05E18", "06A11", "20B25" ], "keywords": [ "finite posets", "prime power order", "cyclic automorphism group", "finite group", "minimum number" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }