{ "id": "2008.04186", "version": "v1", "published": "2020-08-10T15:17:10.000Z", "updated": "2020-08-10T15:17:10.000Z", "title": "On Topological Rank of Factors of Cantor Minimal Systems", "authors": [ "Nasser Golestani", "Maryam Hosseini" ], "comment": "20 pages", "categories": [ "math.DS", "math.OA" ], "abstract": "A Cantor minimal system is of finite topological rank if it has a Bratteli-Vershik representation whose number of vertices per level is uniformly bounded. We prove that if the topological rank of a minimal dynamical system on a Cantor set is finite then all its minimal Cantor factors have finite topological rank as well. This gives an affirmative answer to a question posed by Donoso, Durand, Maass, and Petite.", "revisions": [ { "version": "v1", "updated": "2020-08-10T15:17:10.000Z" } ], "analyses": { "subjects": [ "54H20", "37B05", "37B10" ], "keywords": [ "cantor minimal system", "finite topological rank", "minimal cantor factors", "bratteli-vershik representation", "minimal dynamical system" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }