{ "id": "2008.03597", "version": "v1", "published": "2020-08-08T20:56:43.000Z", "updated": "2020-08-08T20:56:43.000Z", "title": "Regularizing effect of absorption terms in singular and degenerate elliptic problems", "authors": [ "Abdelaaziz Sbai", "Youssef El Hadfi" ], "categories": [ "math.AP" ], "abstract": "In this paper we study the existence and regularity of solutions to the following singular problem \\begin{equation} \\left\\{ \\begin{array}{lll} &-\\displaystyle\\mbox{div} \\big(a(x,u)|\\nabla u|^{p-2}|\\nabla u|\\big) + |u|^{s-1}u =\\frac{f}{u^{\\gamma}} &\\mbox{ in } \\Omega \\\\ &u>0 &\\mbox{ in }\\Omega \\\\ &u=0 &\\mbox{ on } \\delta\\Omega \\end{array} \\right. \\end{equation} proving that the lower order term $u|u|^{s-1}$ has some regularizing effects on the solutions in the case of an elliptic operator with degenerate coercivity.", "revisions": [ { "version": "v1", "updated": "2020-08-08T20:56:43.000Z" } ], "analyses": { "subjects": [ "35A21", "35B20", "35B25", "35B45", "35D30", "35J60", "35J70", "35J75" ], "keywords": [ "degenerate elliptic problems", "regularizing effect", "absorption terms", "lower order term", "singular problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }