{ "id": "2008.00632", "version": "v1", "published": "2020-08-03T03:37:09.000Z", "updated": "2020-08-03T03:37:09.000Z", "title": "T-duality and the exotic chiral de Rham complex", "authors": [ "Andrew Linshaw", "Varghese Mathai" ], "comment": "28 pages", "categories": [ "math.DG", "hep-th", "math.QA" ], "abstract": "Let $Z$ be a principal circle bundle over a base manifold $M$ equipped with an integral closed $3$-form $H$ called the flux. Let $\\widehat{Z}$ be the T-dual circle bundle over $M$ with flux $\\widehat{H}$. Han and Mathai recently constructed the $\\mathbb{Z}_2$-graded space of exotic differential forms $\\mathcal{A}^{\\bar{k}}(\\widehat{Z})$. It has an additional $\\mathbb{Z}$-grading such that the degree zero component coincides with the space of invariant twisted differential forms $\\Omega^{\\bar{k}}(\\widehat{Z}, \\widehat{H})^{\\widehat{\\mathbb{T}}}$, and it admits a differential that extends the twisted differential $d_{\\widehat{H}} = d + \\widehat{H}$. The T-duality isomorphism $\\Omega^{\\bar{k}}(Z,H)^{\\mathbb{T}} \\rightarrow \\Omega^{\\overline{k+1}}(\\widehat{Z}, \\widehat{H})^{\\widehat{\\mathbb{T}}}$ of Bouwknegt, Evslin and Mathai extends to an isomorphism $\\Omega^{\\bar{k}}(Z,H) \\rightarrow \\mathcal{A}^{\\overline{k+1}}(\\widehat{Z})$. In this paper, we introduce the exotic chiral de Rham complex $\\mathcal{A}^{\\text{ch},\\widehat{H},\\bar{k}}(\\widehat{Z})$ which contains $\\mathcal{A}^{\\bar{k}}(\\widehat{Z})$ as the weight zero subcomplex. We give an isomorphism $\\Omega^{\\text{ch},H,\\bar{k}}(Z) \\rightarrow \\mathcal{A}^{\\text{ch},\\widehat{H},\\overline{k+1}}(\\widehat{Z})$ where $\\Omega^{\\text{ch},H,\\bar{k}}(Z)$ denotes the twisted chiral de Rham complex of $Z$, which chiralizes the above T-duality map.", "revisions": [ { "version": "v1", "updated": "2020-08-03T03:37:09.000Z" } ], "analyses": { "keywords": [ "rham complex", "exotic chiral", "degree zero component coincides", "exotic differential forms", "invariant twisted differential forms" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }