{ "id": "2008.00114", "version": "v1", "published": "2020-07-31T23:33:34.000Z", "updated": "2020-07-31T23:33:34.000Z", "title": "Existence and multiplicity results for Kirchhoff type problems on a double phase setting", "authors": [ "Alessio Fiscella", "Andrea Pinamonti" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study two classes of Kirchhoff type problems set on a double phase framework. That is, the functional space where finding solutions coincides with the Musielak-Orlicz-Sobolev space $W^{1,\\mathcal H}_0(\\Omega)$, with modular function $\\mathcal H$ related to the so called double phase operator. Via a variational approach, we provide existence and multiplicity results.", "revisions": [ { "version": "v1", "updated": "2020-07-31T23:33:34.000Z" } ], "analyses": { "keywords": [ "multiplicity results", "double phase setting", "kirchhoff type problems set", "double phase framework", "variational approach" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }