{ "id": "2007.14785", "version": "v1", "published": "2020-07-28T07:40:34.000Z", "updated": "2020-07-28T07:40:34.000Z", "title": "On simultaneous rational approximation to a $p$-adic number and its integral powers, II", "authors": [ "Dzmitry Badziahin", "Yann Bugeaud", "Johannes Schleischitz" ], "comment": "17 pages. arXiv admin note: text overlap with arXiv:1906.05508", "categories": [ "math.NT" ], "abstract": "Let $p$ be a prime number. For a positive integer $n$ and a real number $\\xi$, let $\\lambda_n (\\xi)$ denote the supremum of the real numbers $\\lambda$ for which there are infinitely many integer tuples $(x_0, x_1, \\ldots , x_n)$ such that $| x_0 \\xi - x_1|_p, \\ldots , | x_0 \\xi^n - x_n|_p$ are all less than $X^{-\\lambda - 1}$, where $X$ is the maximum of $|x_0|, |x_1|, \\ldots , |x_n|$. We establish new results on the Hausdorff dimension of the set of real numbers $\\xi$ for which $\\lambda_n (\\xi)$ is equal to (or greater than or equal to) a given value.", "revisions": [ { "version": "v1", "updated": "2020-07-28T07:40:34.000Z" } ], "analyses": { "subjects": [ "11J13" ], "keywords": [ "simultaneous rational approximation", "integral powers", "adic number", "real number", "hausdorff dimension" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }