{ "id": "2007.13330", "version": "v1", "published": "2020-07-27T07:09:43.000Z", "updated": "2020-07-27T07:09:43.000Z", "title": "On the l.c.m. of shifted Fibonacci numbers", "authors": [ "Carlo Sanna" ], "categories": [ "math.NT" ], "abstract": "Let $(F_n)_{n \\geq 1}$ be the sequence of Fibonacci numbers. Guy and Matiyasevich proved that \\begin{equation*} \\log \\operatorname{lcm} (F_1, F_2, \\dots, F_n) \\sim \\frac{3 \\log \\alpha}{\\pi^2} \\cdot n^2 \\quad \\text{as } n \\to +\\infty, \\end{equation*} where $\\operatorname{lcm}$ is the least common multiple and $\\alpha := \\big(1 + \\sqrt{5}) / 2$ is the golden ratio. We prove that for every periodic sequence $\\mathbf{s} = (s_n)_{n \\geq 1}$ in $\\{-1,+1\\}$ there exists an effectively computable rational number $C_{\\mathbf{s}} > 0$ such that \\begin{equation*} \\log \\operatorname{lcm} (F_3 + s_3, F_4 + s_4, \\dots, F_n + s_n) \\sim \\frac{3 \\log \\alpha}{\\pi^2} \\cdot C_\\mathbf{s} \\cdot n^2 , \\quad \\text{as } n \\to +\\infty . \\end{equation*} Moreover, we show that if $(s_n)_{n \\geq 1}$ is a sequence of independent uniformly distributed random variables in $\\{-1,+1\\}$ then \\begin{equation*} \\mathbb{E}\\big[\\log \\operatorname{lcm} (F_3 + s_3, F_4 + s_4, \\dots, F_n + s_n)\\big] \\sim \\frac{3 \\log \\alpha}{\\pi^2} \\cdot \\frac{15 \\operatorname{Li}_2(1 / 16)}{2} \\cdot n^2 , \\quad \\text{as } n \\to +\\infty , \\end{equation*} where $\\operatorname{Li}_2$ is the dilogarithm function.", "revisions": [ { "version": "v1", "updated": "2020-07-27T07:09:43.000Z" } ], "analyses": { "subjects": [ "11B39", "11B37", "11N37" ], "keywords": [ "shifted fibonacci numbers", "independent uniformly distributed random variables", "periodic sequence", "effectively computable rational number", "common multiple" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }