{ "id": "2007.12855", "version": "v1", "published": "2020-07-25T04:39:31.000Z", "updated": "2020-07-25T04:39:31.000Z", "title": "Bounding cohomology on a smooth projective surface with Picard number 2", "authors": [ "Sichen Li" ], "comment": "6 pages, a simplified version of arxiv:1805.10741. Comments welcome!", "categories": [ "math.AG" ], "abstract": "The following conjecture arose out of discussions between B. Harbourne, J. Ro\\'e, C. Cilberto and R. Miranda: for a smooth projective surface $X$ there exists a positive constant $c_X$ such that $h^1(\\mathcal O_X(C))\\le c_X h^0(\\mathcal O_X(C))$ for every prime divisor $C$ on $X$. When the Picard number $\\rho(X)=2$, we prove that if either the Kodaira dimension $\\kappa(X)=1$ and $X$ has a negative curve or $X$ has two negative curves, then this conjecture holds for $X$.", "revisions": [ { "version": "v1", "updated": "2020-07-25T04:39:31.000Z" } ], "analyses": { "subjects": [ "14C20" ], "keywords": [ "smooth projective surface", "picard number", "bounding cohomology", "negative curve", "conjecture arose" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }