{ "id": "2007.12752", "version": "v1", "published": "2020-07-24T19:44:44.000Z", "updated": "2020-07-24T19:44:44.000Z", "title": "On the $L^1$ and pointwise divergence of continuous functions", "authors": [ "Karol Gryszka", "Paweł Pasteczka" ], "categories": [ "math.CA" ], "abstract": "For a family of continuous functions $f_1,f_2,\\dots \\colon I \\to \\mathbb{R}$ ($I$ is a fixed interval) with $f_1\\le f_2\\le \\dots$ define a set $$ I_f:=\\big\\{x \\in I \\colon \\lim_{n \\to \\infty} f_n(x)=+\\infty\\big\\}.$$ We study the properties of the family of all admissible $I_f$-s and the family of all admissible $I_f$-s under the additional assumption $$ \\lim_{n \\to \\infty} \\int_x^y f_n(t)\\:dt=+\\infty \\quad \\text{ for all }x,y \\in I\\text{ with }x