{ "id": "2007.12479", "version": "v1", "published": "2020-07-24T12:23:23.000Z", "updated": "2020-07-24T12:23:23.000Z", "title": "A Remark on Monge-Ampère equation over exterior domains", "authors": [ "Guanghao Hong" ], "categories": [ "math.AP" ], "abstract": "We improve the result of Caffarelli-Li [CL03] on the asymptotic behavior at infinity of the exterior solution $u$ to Monge-Amp\\`{e}re equation $det(D^2u)=1$ on $\\mathbb{R}^n\\backslash K$ for $n\\geq 3$. We prove that the error term $O(|x|^{2-n})$ can be refined to $d (\\sqrt{x'Ax})^{2-n}+O(|x|^{1-n})$ with $d=Res[u]$ the residue of $u$.", "revisions": [ { "version": "v1", "updated": "2020-07-24T12:23:23.000Z" } ], "analyses": { "subjects": [ "35J96" ], "keywords": [ "monge-ampère equation", "exterior domains", "asymptotic behavior", "exterior solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }