{ "id": "2007.12373", "version": "v1", "published": "2020-07-24T06:46:28.000Z", "updated": "2020-07-24T06:46:28.000Z", "title": "Compact condensations of Hausdorff spaces", "authors": [ "Vitalii I. Belugin", "Alexander V. Osipov", "Evgenii G. Pytkeev" ], "comment": "17 pages", "categories": [ "math.GN" ], "abstract": "In this paper, we continue to study one of the classic problems in general topology raised by P.S. Alexandrov: when a Hausdorff space $X$ has a continuous bijection (a condensation) onto a compactum? We concentrate on the situation when not only $X$ but also $X\\setminus Y$ can be condensed onto a compactum whenever the cardinality of $Y$ does not exceed certain $\\tau$.", "revisions": [ { "version": "v1", "updated": "2020-07-24T06:46:28.000Z" } ], "analyses": { "keywords": [ "hausdorff space", "compact condensations", "classic problems", "general topology", "alexandrov" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }