{ "id": "2007.11767", "version": "v1", "published": "2020-07-23T03:14:30.000Z", "updated": "2020-07-23T03:14:30.000Z", "title": "Non-trivial $t$-intersecting families for vector spaces", "authors": [ "Mengyu Cao", "Benjian Lv", "Kaishun Wang", "Sanming Zhou" ], "comment": "26 pages", "categories": [ "math.CO" ], "abstract": "Let $V$ be an $n$-dimensional vector space over a finite field $\\mathbb{F}_q$. In this paper we describe the structure of maximal non-trivial $t$-intersecting families of $k$-dimensional subspaces of $V$ with large size. We also determine the non-trivial $t$-intersecting families with maximum size. In the special case when $t=1$ our result gives rise to the well-known Hilton-Milner Theorem for vector spaces.", "revisions": [ { "version": "v1", "updated": "2020-07-23T03:14:30.000Z" } ], "analyses": { "subjects": [ "05D05", "05A30" ], "keywords": [ "intersecting families", "dimensional vector space", "well-known hilton-milner theorem", "finite field", "maximal non-trivial" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }