{ "id": "2007.11390", "version": "v1", "published": "2020-07-22T12:53:55.000Z", "updated": "2020-07-22T12:53:55.000Z", "title": "The asymptotic tails of limit distributions of continuous time Markov chains", "authors": [ "Chuang Xu", "Mads Christian Hansen", "Carsten Wiuf" ], "categories": [ "math.PR" ], "abstract": "This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions of continuous-time Markov chains on a subset of the non-negative integers. A new identity for stationary measures is established. In particular, for continuous-time Markov chains with asymptotic power-law transition rates, tail asymptotics for stationary distributions are classified into three types by three easily computable parameters: (i) Conley-Maxwell-Poisson distributions (light-tailed), (ii) exponential-tailed distributions, and (iii) heavy-tailed distributions. Similar results are derived for quasi-stationary distributions. The approach to establish tail asymptotics is different from the classical semimartingale approach. We apply our results to biochemical reaction networks (modeled as continuous-time Markov chains), a general single-cell stochastic gene expression model, an extended class of branching processes, and stochastic population processes with bursty reproduction, none of which are birth-death processes.", "revisions": [ { "version": "v1", "updated": "2020-07-22T12:53:55.000Z" } ], "analyses": { "subjects": [ "60J27", "60J28", "60J74", "90E20" ], "keywords": [ "continuous time markov chains", "continuous-time markov chains", "asymptotic tails", "limit distributions", "tail asymptotics" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }