{ "id": "2007.11300", "version": "v1", "published": "2020-07-22T09:36:15.000Z", "updated": "2020-07-22T09:36:15.000Z", "title": "Bounds for an integral of the modified Bessel function of the first kind and expressions involving it", "authors": [ "Robert E. Gaunt" ], "comment": "18 pages", "categories": [ "math.CA" ], "abstract": "Simple upper and lower bounds are obtained for the integral $\\int_0^x\\mathrm{e}^{-\\gamma t}t^\\nu I_\\nu(t)\\,\\mathrm{d}t$, $x>0$, $\\nu>-\\frac{1}{2}$, $0<\\gamma<1$. Most of our bounds for this integral are tight as $x\\rightarrow\\infty$. We apply one of our inequalities to bound some expressions involving this integral. Two of these expressions appear in Stein's method for variance-gamma approximation, and our bounds will allow for a technical advancement to be made to the method.", "revisions": [ { "version": "v1", "updated": "2020-07-22T09:36:15.000Z" } ], "analyses": { "subjects": [ "33C10", "26D15" ], "keywords": [ "modified bessel function", "first kind", "simple upper", "steins method", "lower bounds" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }