{ "id": "2007.11160", "version": "v1", "published": "2020-07-22T02:07:45.000Z", "updated": "2020-07-22T02:07:45.000Z", "title": "Presentations of the Roger-Yang generalized skein algebra", "authors": [ "Farhan Azad", "Zixi Chen", "Matt Dreyer", "Ryan Horowitz", "Han-Bom Moon" ], "comment": "17 pages, comments welcome", "categories": [ "math.GT", "math.QA" ], "abstract": "We describe presentations of the Roger-Yang generalized skein algebras for punctured spheres with an arbitrary number of punctures. This skein algebra is a quantization of the decorated Teichmuller space and generalizes the construction of the Kauffman bracket skein algebra. In this paper, we also obtain a new interpretation of the homogeneous coordinate ring of the Grassmannian of planes in terms of skein theory.", "revisions": [ { "version": "v1", "updated": "2020-07-22T02:07:45.000Z" } ], "analyses": { "subjects": [ "57M27", "32G15", "57M50" ], "keywords": [ "roger-yang generalized skein algebra", "presentations", "kauffman bracket skein algebra", "arbitrary number", "skein theory" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }