{ "id": "2007.10864", "version": "v1", "published": "2020-07-21T14:43:04.000Z", "updated": "2020-07-21T14:43:04.000Z", "title": "Weighted norm inequalities for the maximal operator on $\\Lpp$ over spaces of homogeneous type", "authors": [ "David Cruz-Uribe", "Jeremy Cummings" ], "categories": [ "math.CA" ], "abstract": "Given a space of homogeneous type $(X,\\mu,d)$, we prove strong-type weighted norm inequalities for the Hardy-Littlewood maximal operator over the variable exponent Lebesgue spaces $L^\\pp$. We prove that the variable Muckenhoupt condition $\\App$ is necessary and sufficient for the strong type inequality if $\\pp$ satisfies log-H\\\"older continuity conditions and $1 < p_- \\leq p_+ < \\infty$. Our results generalize to spaces of homogeneous type the analogous results in Euclidean space proved by Cruz-Uribe, Fiorenza and Neugebuaer (2012).", "revisions": [ { "version": "v1", "updated": "2020-07-21T14:43:04.000Z" } ], "analyses": { "subjects": [ "42B25", "46A80", "46E30" ], "keywords": [ "homogeneous type", "strong type inequality", "hardy-littlewood maximal operator", "variable exponent lebesgue spaces", "strong-type weighted norm inequalities" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }