{ "id": "2007.10676", "version": "v1", "published": "2020-07-21T09:28:54.000Z", "updated": "2020-07-21T09:28:54.000Z", "title": "Gradient Gibbs measures for the SOS model with integer spin values on a Cayley tree", "authors": [ "G. I. Botirov", "F. H. Haydarov" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1902.04909", "categories": [ "math-ph", "math.MP" ], "abstract": "In the present paper we continue the investigation from [1] and consider the SOS (solid-on-solid) model on the Cayley tree of order $k \\geq 2$. In the ferromagnetic SOS case on the Cayley tree, we find three solutions to a class of period-4 height-periodic boundary law equations and these boundary laws define up to three periodic gradient Gibbs measures.", "revisions": [ { "version": "v1", "updated": "2020-07-21T09:28:54.000Z" } ], "analyses": { "keywords": [ "cayley tree", "integer spin values", "sos model", "periodic gradient gibbs measures", "height-periodic boundary law equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }