{ "id": "2007.10447", "version": "v1", "published": "2020-07-20T20:14:57.000Z", "updated": "2020-07-20T20:14:57.000Z", "title": "On $q$-analogs of zeta functions associated with a pair of $q$-analogs of Bernoulli numbers and polynomials", "authors": [ "Ahmad El-Guindy", "Zeinab Mansour" ], "comment": "24 pages, 2 figures", "categories": [ "math.CA", "math.NT" ], "abstract": "In this paper, we use two different approaches to introduce $q$-analogs of Riemann's zeta function and prove that their values at even integers are related to the $q$-Bernoulli and $q$ Euler's numbers introduced by Ismail and Mansour [Analysis and Applications, {\\bf{17}}, 6, 2019, 853--895].", "revisions": [ { "version": "v1", "updated": "2020-07-20T20:14:57.000Z" } ], "analyses": { "subjects": [ "11B68", "33E99" ], "keywords": [ "bernoulli numbers", "polynomials", "riemanns zeta function", "eulers numbers", "approaches" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }