{ "id": "2007.09958", "version": "v1", "published": "2020-07-20T09:17:31.000Z", "updated": "2020-07-20T09:17:31.000Z", "title": "Monodromy of general hypersurfaces", "authors": [ "Maria Gioia Cifani" ], "categories": [ "math.AG" ], "abstract": "Let $X$ be a general complex projective hypersurface in $\\mathbb{P}^{n+1}$ of degree $d>1$. A point $P$ not in $X$ is called uniform if the monodromy group of the projection of $X$ from $P$ is isomorphic to the symmetric group. We prove that all the points in $\\mathbb{P}^{n+1}$ are uniform for $X$, generalizing a result of Cukierman on general plane curves.", "revisions": [ { "version": "v1", "updated": "2020-07-20T09:17:31.000Z" } ], "analyses": { "subjects": [ "14H30", "14H50", "14J10", "14J70" ], "keywords": [ "general hypersurfaces", "general complex projective hypersurface", "general plane curves", "symmetric group", "monodromy group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }