{ "id": "2007.09778", "version": "v1", "published": "2020-07-19T20:34:11.000Z", "updated": "2020-07-19T20:34:11.000Z", "title": "Normal Reflection Subgroups of Complex Reflection Groups", "authors": [ "Carlos E. Arreche", "Nathan F. Williams" ], "categories": [ "math.CO", "math.RT" ], "abstract": "We study normal reflection subgroups of complex reflection groups. Our approach leads to a refinement of a theorem of Orlik and Solomon to the effect that the generating function for fixed-space dimension over a reflection group is a product of linear factors involving generalized exponents. Our refinement gives a uniform proof and generalization of a recent theorem of the second author.", "revisions": [ { "version": "v1", "updated": "2020-07-19T20:34:11.000Z" } ], "analyses": { "subjects": [ "20F55", "05E10" ], "keywords": [ "complex reflection groups", "study normal reflection subgroups", "refinement", "fixed-space dimension", "linear factors" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }