{ "id": "2007.09220", "version": "v1", "published": "2020-07-17T20:39:24.000Z", "updated": "2020-07-17T20:39:24.000Z", "title": "The complexity threshold for the emergence of Kakutani inequivalence", "authors": [ "Van Cyr", "Aimee Johnson", "Bryna Kra", "Ayse Sahin" ], "categories": [ "math.DS" ], "abstract": "We show that linear complexity is the threshold for the emergence of Kakutani inequivalence for measurable systems supported on a minimal subshift. In particular, we show that there are minimal subshifts of arbitrarily low super-linear complexity that admit both loosely Bernoulli and non-loosely Bernoulli ergodic measures and that no minimal subshift with linear complexity can admit inequivalent measures.", "revisions": [ { "version": "v1", "updated": "2020-07-17T20:39:24.000Z" } ], "analyses": { "subjects": [ "37B10", "68R15" ], "keywords": [ "kakutani inequivalence", "complexity threshold", "minimal subshift", "admit inequivalent measures", "arbitrarily low super-linear complexity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }