{ "id": "2007.08704", "version": "v1", "published": "2020-07-17T00:54:16.000Z", "updated": "2020-07-17T00:54:16.000Z", "title": "On Lusternik-Schnirelmann category and topological complexity of no k-equal manifolds", "authors": [ "Jesús González", "José Luis León-Medina" ], "categories": [ "math.AT" ], "abstract": "We compute the Lusternik-Schnirelmann category and the topological complexity of no $k$-equal manifolds $M^{(k)}_d(n)$ for certain values of $d$, $k$ and $n$. This includes instances where $M^{(k)}_d(n)$ is known to be rationally non-formal. The key ingredient in our computations is the knowledge of the cohomology ring $H^*(M^{(k)}_d(n))$ as described by Dobrinskaya and Turchin. A fine tuning comes from the use of obstruction theory techniques.", "revisions": [ { "version": "v1", "updated": "2020-07-17T00:54:16.000Z" } ], "analyses": { "subjects": [ "55R80", "55S35", "55S40", "55M30", "68T40" ], "keywords": [ "lusternik-schnirelmann category", "topological complexity", "k-equal manifolds", "obstruction theory techniques", "fine tuning comes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }